
Logging / I18N

Frameworks used for logging and i18n

SLF4J API
FR I18N framework (i18n-core component)

The I18N framework provides in the i18n-slf4j module, a class, which should be used everywhere in the code to log messages LocalizedLogger
and/or exceptions.
The class delegates to SLF4J API.LocalizedLogger

An SLF4J implementation can be chosen at runtime by providing the appropriate jar in the classpath. In particular, two implementations are used:
OpenDJ implementation, used when the jar is included. It delegate to and classes from opendj-slf4j-adapter ErrorLogger DebugLogger
OpenDJ server.

this implementation is used in the server.
java.util.logging implementation, used when the jar is included.slf4j-jdk14

this implementation is used in the tools.

Log levels

A message can be logged using the following levels (provided by SLF4J API and class):LocalizedLogger

error: signals a fatal or non fatal error that requires an action from an administrator
corresponds to / in OpenDJ server 2fatal error

warning: signals a potential or real issue that does not require immediate action but may need an administrative action later
corresponds to in OpenDJ server 2 warning

info: a high-level notice
corresponds to in OpenDJ server 2notice

debug: informational message
corresponds to in OpenDJ server 2info

trace: information needed to debug
corresponds to in OpenDJ server 2debug

Log levels and i18n:

Messages logged at error, warning, info and debug level internationalized.must be

Messages logged at trace level are not internationalized.

Logger and category and message ID

Each logged message has a category. The category is given by the classname where the message is logged.

This allows to define a single logger per class, with the classname.

However, in order to have a higher kind of grouping, some pre-defined categories with simple names are also used
(eg, , , ...)CORE SYNC

There is a mapping between packages (information which is included in classnames) and these simple categories. If a
class does not map to a pre-defined package, then its category is its fully qualified class name.

For example, all classes in the org.forgerock.opendj.server.core package or a sub-package are mapped to
the CORE category.

Note that for debug logging in the server (messages logged by class), the pre-defined categories are DebugLogger

NOT used.

I18N messages identification

For i18n messages, there is a way to uniquely identify the messages with two properties:

the resource name of the .LocalizableMessage
the ordinal of the .LocalizableMessage

Ordinal is extracted from the message name suffix, while resource name corresponds to the resource file containing the messages.

ERR_ADMIN_CANNOT_GET_LISTENER_BASE_1=some message
ERR_ADMIN_CANNOT_GET_MANAGED_OBJECT_2=another message
...

Code examples

Loggers

Each class should declare its own logger using the following code. This is valid for server classes as well as client tools classes.

private static final LocalizedLogger logger = LocalizedLogger.getLoggerForThisClass();

Should you exceptionally need to log to a specific category that does not correspond to the class, you can create another logger to log this specific category:

private static final LocalizedLogger extensionLogger = LocalizedLogger.getLocalizedLogger("org.opends.server.
extensions"); // will log to category EXTENSION according to pre-defined mapping

Non-debug (I18N) messages

The logging methods accept a localizable message descriptor and its arguments. It is the preferred way of logging:

logger.error(ERR_ADMIN_CANNOT_GET_LISTENER_BASE, 123, "some string"); // message with a numeric argument and a
string argument

Any exception is passed as the last argument:

logger.error(ERR_ADMIN_CANNOT_GET_LISTENER_BASE, 123, "some string", anException);

Debug messages

The method accepts non localized arguments as an alternative to localizable argument:LocalizedLogger#trace

logger.trace("a debug message with arg1: %s and arg2: %s", arg1, arg2)

There is also a specific method to trace an exception in addition to the message:

logger.traceException(anException, "a debug message with arg1: %s and arg2: %s", arg1, arg2)

	Logging / I18N

